[1] Wang D, Zhang Y, Zhao Q, et al. Tribological Mechanism of Graphene and Ionic Liquid Mixed Fluid on Grinding Interface under Nanofluid Minimum Quantity Lubrication[J]. Chinese Journal of Mechanical Engineering, 2023, 36: 78.
[2] Wang D, Zhang Y, Zhao Q, et al. Tribological mechanism of carbon group nanofluids on grinding interface under minimum quantity lubrication based on molecular dynamics simulation. Frontiers of Mechanical Engineering. 2023, 18(1): 17.
[3] 王德祥, 赵齐亮, 张宇, 等. 离子液体在微量润滑磨削界面的摩擦学机理研究. 中国机械工程, 2022, 33(5): 560-568.
[4] 王德祥,孙树峰,唐沂珍,等. 微量润滑磨削界面的分子动力学模拟[J]. 西安交通大学学报, 2020, 54(12): 168-175.
[5] Wang D, Sun S, Jiang J, et al. From the grain/workpiece interaction to the coupled thermal-mechanical residual stresses: an integrated modeling for controlled stress grinding of bearing ring raceway[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(1-4): 475-499.
[6] Wang D, Sun S, Jiang J, et al. The profile analysis and selection guide for the heat source on the finished surface in grinding[J]. Journal of Manufacturing Processes, 2017, 30:178-186.
[7] Wang D, Ge P, Sun S, et al. Investigation on the heat source profile on the finished surface in grinding based on the inverse heat transfer analysis[J]. International Journal of Advanced Manufacturing Technology, 2017, 92(2):1-16.
[8] 王德祥, 孙树峰, 颜丙亮,等. 已加工表面热源模型研究及磨削温度场数值模拟[J]. 西安交通大学学报, 2018, 52(4): 84-89.
[9] Wang D, Ge P, Bi W, et al. Grain trajectory and grain workpiece contact analyses for modeling of grinding force and energy partition[J]. International Journal of Advanced Manufacturing Technology, 2014, 70(9-12):2111-2123.
[10] 王德祥, 葛培琪, 毕文波,等. 磨削弧区热源分布形状研究[J]. 西安交通大学学报, 2015, 49(8):116-121.
[11] 王德祥, 葛培琪, 毕文波,等. 滚动轴承内圈滚道表层残余应力分布实验研究[J]. 华中科技大学学报(自然科学版), 2015(3):12-16.
[12] Wang D, Ge P, Zhang L, et al. Statistical Calculations of Grinding Abrasive Number Based on Normal Distribution[C]. Applied Mechanics & Materials, 2012, 229-231:474-477.
[13] 赵齐亮, 王德祥. 单颗磨粒磨削的分子动力学模拟[J]. 青岛理工大学学报, 2020, 41(6): 88-95+150.